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Wetting controlled phase transitions in two-dimensional systems of colloids
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Department of Chemistry, Technical University of Denmark, DK-2800 Lyngby, Denmark
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~Received 29 September 1997!

The phase behavior of disk colloids, embedded in a two-dimensional fluid matrix that undergoes a first-order
phase transition, is studied in the complete wetting regime where the thermodynamically metastable fluid phase
is stabilized at the surface of the disks. In dilute collections of disks, the tendency to minimize the extent of the
fluid-fluid interface and the extent of the unfavorable wetting phase in the system gives rise to aggregation
phenomena and to separation of large domains of disks that have the characteristics of bulk colloidal phases.
The conditions for phase transitions among cluster gas, liquid, and solid phases of the disk colloids are
determined from the corresponding values of the disk chemical potential within an analytic representation of
the grand partition function for the excess energy associated with a gas of disk clusters in the low-disk-density
limit. The wetting effective-interface potential is combined with the disk interaction potential in associating an
internal energy with each one of the clusters. The theory can thus be applied to any type of interaction potential
among disks, provided that the free energy associated with the corresponding bulk colloidal phases is available.
A phase diagram is calculated explicitly for the case of hard disks on the basis of an analytical approximation
for the free energy of the hard disk fluid phase and the generalized effective liquid approximation for the free
energy of the hard disk solid phase.@S1063-651X~98!00203-7#

PACS number~s!: 68.45.Gd, 64.70.2p, 82.70.Dd
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I. INTRODUCTION

In general, when two thermodynamic phasesa andb are
close to coexistence, i.e., close to a first-order phase tra
tion line, the presence of a substrate strongly ‘‘preferrin
one of the phases leads to singularwetting effects@1#. The
preferred phaseb tends to form a layer intruding betwee
the substrate and the other phasea, even when the latter is
stable in the bulk. In thecomplete wettingregime, the thick-
nessl W of the layer diverges continuously,l W→`, as the
bulk a→b phase transition line is approached~Fig. 1!.

Wetting of silica spheres by fluid lutidine (b) in a water
solution (a), close to the fluid water-lutidine coexistenc
conditions, was first suggested as the cause for their rev
ible aggregation, calledflocculation, in the celebrated pape
by Beysens and Esteve@2#. Subsequently, particle aggreg
tion phenomena have been reported in several other ph
separating binary mixtures@3#. Recently, based on compute
calculations on a pseudo-two-dimensional microsco
model of lipid-protein interaction, wetting was suggested
a means of protein organization in membranes@4#. These are
particular examples within the general interest in how
phases exhibited by systems of colloids are manipulated
controlling the properties of their embedding environme
Concordantly, in this study we consider ana-embedded two-
dimensional dilute system ofb-wet disk colloids in the com-
plete wetting regime, close to thea-b first-order transition
line. The tendency to minimize the extent of thea-b fluid-
fluid interface and the extent of the unfavorableb phase in
the system gives rise to aggregation phenomena that re
the balance between those tendencies, and the tenden
increase entropy by separating the disks from each ot
This balance changes as thea-b first-order transition line is
571063-651X/98/57~3!/3123~11!/$15.00
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approached. Consequently, one can expect a transition f
an a-embedded cluster gas of disks to ab-rich phase of
disks, which has the characteristics of a bulk phase of d
colloids.

From the theoretical side, wetting-induced flocculatio
phenomena have been studied by applying a Ginzbu
Landau model to describe the embedding fluid matrix by
one-component order parameter, which is coupled to the

FIG. 1. The generic phase diagram for wetting by one of tw
fluid phases (b) at the bulk coexistence line with the other (a),
shown by a thick solid line.Critical wetting transition occurs atTW

by increasing the temperature along thea-b coexistence curve, as
shown by path~1!. For T.TW , any path taken in the direction of
the arrow~2! would terminate in a continuouscomplete wettingas
the a-b coexistence curve is approached.
3123 © 1998 The American Physical Society
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ordinates that represent the location of sphere colloids@5#.
Based on this model, simple thermodynamic considerati
have led to a qualitative phase diagram, including region
a-embedded spheres,b-embedded spheres, and the coex
ence of the two phases. Computer calculations on the m
have led to more precise topologies of the different pha
but consumed more computation time than to allow the p
duction of a full phase diagram.

In this study we exploit the simplicity involved in th
effective interface potential description of the wetting ph
nomenology ~Secs. II and IV!. Its application within a
straightforward and exactly solvable way of writing th
grand partition function for the excess energy associa
with a gas of disk clusters in the low-disk-density limit~Sec.
III ! is the basis for a theory that enables the calculation of
conditions at which flocculation occurs. More specifical
we relate the value of the disk chemical potential at the tr
sition betweena-embedded disk cluster gas andb-embedded
disk systems to the chosen thermodynamic control par
eters~Sec. V!. The entropy associated with the spatial org
nization of the disks plays a crucial role in the description
our system, and the total number of phases the system
hibits depends on the number of colloidal phases the d
exhibit in the bulk. In Sec. VI we calculate quantitatively th
phase diagram that separates among regions ofa-embedded
hard disk cluster-gas andb-embedded hard disk systems, a
the corresponding coexistence regions. Within the equi
rium regions ofb-embedded hard disk systems, we dist
guish between fluid and solid hard-disk colloidal phases,
suming this transition to be first order. We describe the fl
hard disk phase by an approximate analytical form for
free energy, which provides the best combination betw
simplicity and agreement with results obtained by numer
simulations@6#. For the solid phase we apply the differenti
formulation of the generalized effective liquid approximati
~GELA! @7# with an approximate analytical expression f
the direct correlation function of hard disks within th
Percus-Yevick equation@8#. We start our discussion by in
troducing the effective interface potential in the descript
of wetting in circular geometry.

II. WETTING IN CIRCULAR GEOMETRY –
A RECOLLECTION

In planar geometry, a scaling description of the me
thickness of the wetting layer is achieved in terms of t
orthogonal fields: one pressurelike fieldP measures the dif-
ference in the grand canonical potentials per unit volume~or,
area in two-dimensional geometry! of the two bulk phases
the other, temperaturelike fieldt is a generalized coordinat
measuring the distance from the wetting transition po
(PW ,TW) along the coexistence line shown in Fig. 1.
terms of these fields, the continuous growth of the wett
layer is characterized by the power lawsl W}P2Cc

, P
→01, in the complete wetting regime, andl W}t2C, t
→01, along the coexistence line. The comprehensive
scription is achieved with a scaling functionF(x) and a
two-parameter scaling form

l W;t2CF@P/tD#, F~x!5H const, x→0

x2Cc
, x→1`,

~1!
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where D[C/Cc. The values of the exponentsCc and C
depend on the spatial dimension of the system under con
eration@1#.

Increasing the thickness of a wetting layer around
spherical, or a cylindrical~circular!, substrate leads to a
increase in the area~length! of the interface. The correspond
ing increase in the interfacial free energy suppresses c
plete wetting atP50. Hence the divergence of the mea
thickness of the wetting layer can only occur in the lim
where the curvature of the substrate vanishes, adding
curvature as a third field in the scaling description. In tw
dimensions, the mean thickness of the wetting layer aroun
circular disk of radiusr 0 was shown to obey the scaling form
@9#

l W5s21/3r 0
1/3Y~Pr 0 /s!, Y~x!;H const, x50

x21/3, x→`,
~2!

where s is the stiffnessof the a-b interface.s defines a
length scale in the system that we shall call thebulk corre-
lation length,

jb[kBT/s, ~3!

wherekB is the Boltzmann constant andT is the temperature
@10#. From Eqs.~2! and ~3!, the complete wetting regime,
i.e., the conditions for the emergence of a macroscopic w
ting layer of thickness;r 0

1/3 much larger than the molecula
distances;jb , is defined as@11#

r 0@jb , TW,T,TC, s/r 0@P→01, ~4!

whereTC is the bulka-b critical point andTW is the wetting
temperature for the analogous flat system.

The replacement of the density profile of the fluid-flu
(a-b) interface by a sharp kink, to which a local interfaci
stiffness (s) is attached, is valid in the complete wettin
regime@1#, where the wetting of a disk is properly describe
by aneffective interface grand canonical potential@9,11#

V~ l W!52pV~ l W!12ps~r 01 l W!1pP@~r 01 l W!22r 0
2#,
~5!

where V(R)[0.948r 0(kBT)2/(sR2). The term pP@(r 0

1 l W)22r 0
2# in this equation accounts for the excess ene

of the thermodynamically unfavorableb phase, which cov-
ers an area ofp@(r 01 l W)22r 0

2#; 2ps(r 01 l W) is the self-
energy of the interface, and the first term represents the
of configurational entropy involved in preventing the inte
face from crossing the surface of the substrate@9#. V(R) is of
longer range than the relevant van der Waals substr
interface interaction potential, which is proportional in tw
dimensions tor 0 /Rp23 in the limit of R!r 0, wherep56
and 7 for nonretarded and retarded interactions, respecti
@9#, and is therefore the only relevant interaction potentia
the problem@12#. The case of wetting of a single disk i
illustrated in Figs. 2~a! and 2~b!, via microconfigurations
generated in a computer-simulation calculation on a mic
scopic interaction model@4#.

Under the conditions for wetting of a single disk, bringin
two disks close to each other gives rise to two different
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FIG. 2. Illustration of wetting phenomena around circular disks embedded in a binary fluid near ana-b phase transition. The two phase
are indicated by light (a) and dark (b) gray tones, respectively. The disks, which have a preference for phaseb, are colored white.~a! The
case of a single disk outside the wetting regime where only a microscopically thin layer of phaseb is present at the interface, correspondi
to the case of interfacial adsorption.~b! The case of a single disk in the complete wetting regime. A thick layer of phaseb is nucleated at
the surface of the disk.~c! The case of two nearby disks in the complete wetting regime, where the wetting layers overlap, lea
capillary condensation. The data for the figures are obtained from computer-simulation calculations on a microscopic model of lipi
interactions@4#.
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pologies of thea-b interface line: one involving twosepa-
rate loops, closing around each one of the disks individua
@Fig. 3~a! ~sep!#; and one involving a single loop wrappin
the two disks@Figs. 3~a! ~bri! and 2~c!#. The latter is due to
capillary condensationbetween the two disks that occurs
minimize the excess free energy that is associated wit
given length of thea-b interface and a given coverage of th
thermodynamically unfavorableb phase. A transition be
tween theseparatedand bridged configurations can be in
duced by tuning either the distance between the disks o
changing the thermodynamic conditions for the system, e
via P. Capillary condensation between two wet disks c
already take place when the distance between the disks
the order of their radiusr 0. It involves a dramatic increase i
the local concentration~or rather the coverage! of the wetting
phaseb, and introduces a new effective force in the syste
giving rise to a net attraction between the disks@11#. The
y

a

y
.,

n
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,

aggregation force is caused by the tendency of the conde
system to reduce the length of thea-b interface and the
coverage of theb phase by reducing the distance betwe
the disks. Capillary-wave fluctuations of the interface we
shown not to effect its mean position in the regions wher
bridges between the two disks and that, to leading order,
mean position of the remaining interface is given by t
theory for the single disk@11#.

III. GRAND CANONICAL POTENTIAL
FOR A DILUTE COLLECTION OF DISKS

Now consider a system ofN identical ‘‘b-preferring’’
mobile disks of radiusr 0, immersed in ana fluid. According
to the study of capillary condensation between two dis
@11#, it is reasonable to expect that by tuning the chemi
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potential for the fluids close to thea-b transition line~but on
thea side! one would reach a region where the disks tend
aggregate and form clusters of disks with ab-rich phase
filling the space between them. Within the effective descr
tion of thea-b interface@cf. Eq. ~5!#, we define a cluster a
a collection of disks surrounded by the samea-b interface
line. When neglecting direct interactions between the di
~apart from the excluded-volume hard disk interactions!, the
size of those clusters and the cluster-size distribution
controlled by the balance between different entropy effe
and the capillary forces which are involved in minimizin
the total length of thea-b interface and the coverage of th

FIG. 3. Illustration of the model interface lines to which a ph
nomenological interfacial stiffnesss is attached when determinin
the approximated wetting potential in the case of two and th
disks: ~a! Two two-dimensional disks of radiusr 0 separated at a
distanceR. The wetting layers surrounding each one of the dis
~sep! remain separated untilP is sufficiently small to allow for the
formation of a bridging interface~bri! @11#. As an approximation,
the bridging interface is taken to be a straight line, tangential to
surfaces of the two disks~app!. ~b! Three two-dimensional disks o
radius r 0 separated at a distancesR1, R2, and R3. The interface
mean position is approximated by connecting the surfaces of
disks with tangential straight lines.
o
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re
ts

b phase. The tendency to increase translational entr
would push the disks apart as well as give rise to a cer
cluster-size distribution once clusters are formed. The w
the disks ~colloids! would arrange themselves inside th
clusters is controlled by the interplay betweenconfigura-
tional entropy, dominating in the colloid fluid phase, and t
entropy of free volumeper disk, dominating in the colloid
crystalline phase@13#.

We write theexcessgrand canonical potential associate
with the creation of clusters in a dilute collection of identic
disks in the limit where the interaction among the clusters
negligible. More precisely, we take into account disk-di
interaction potentials only between disks within the sa
cluster, and neglect direct interactions between disks that
long to different clusters. The sizes of the clusters are par
eterized bym, which denotes the number of disks in a clu
ter. By nm we denote the number of clusters consisting ofm
disks, and by$nm% a distribution of cluster sizes. Given a s
$nm%, we can write the contribution of thewet disks to the
Hamiltonian of the system as

Hex5 (
m51

`

(
k51

nm FWm~r1
~m,k! , . . . ,rm

~m,k!!

1Cm~r1
~m,k! , . . . ,rm

~m,k!!1(
i 51

m pm,k,i
2

2c G , ~6!

where $nm% is subject to the restriction(m51
` mnm5N, N

being the total number of disks in a given realization of t
system.c is the mass of each one of the disks, andpm,k,i

2 /2c
is the kinetic energy of thei th disk in thekth cluster that
consists ofm disks. For all clusters ofm disks the same
Wm(r1 , . . . ,rm) and Cm(r1 , . . . ,rm) functions are defined
as aneffective interface potentialand a diskcolloid-colloid
interaction potential, respectively, wherer1

(m,k) , . . . ,rm
(m,k)

are the positions of them disks that belong to the sam
cluster. WhileCm depends on the positions of them disks
inside the cluster, relative to each other,Wm depends only on
the position of the interface surrounding the cluster. A po
to which we return later.

With the help of a chemical potentialmD , which controls
the total number of disks in the system, we define and c
culate theexcessfactor due to the wet disks in thegrand
partition function of the system as follows:

Jex5 (
n150

`

(
n250

`

••• (
nm50

`

•••

1

n1!n2! •••nm! •••

3)
i
E d2pi

h2
d2r i$exp@~mDN2Hex!/kBT#%, ~7!

where h is Plank’s constant andL5h/(2pckBT)1/2 is the
thermal ~de Broglie! wavelength associated with a disk o
massc. ) i*d2pid2r i indicates a multiple integral over a
possible values of the components of the momentumpi and
the positionr i of every disk for a given cluster-size distribu
tion $nm%. Here we have coupledmD to the total number of
disks, N5(m51

` mnm , for each distribution$nm%, and inte-
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grated over all possible cluster distributions and thus over all possible values ofN. As we neglect interactions between cluste
and between disks that belong to different clusters, all clusters of the same size within a given distribution$nm% contribute
equally to the trace in Eq.~7!. Thus we can write

)
i 51

N E d2r iexpH (
m51

`

(
k51

nm

@Wm~r1
~m,k! , . . . ,rm

~m,k!
!1Cm~r1

~m,k! , . . . ,rm
~m,k!

!#J
5S )

m51

`
1

m! )
i 51

m E d2r i D expH (
m51

`

nm@Wm~r1
~m! , . . . ,rm

~m!
!1Cm~r1

~m! , . . . ,rm
~m!

!#J
5 )

m51

` S 1

m! )
i 51

m E d2r ie@Wm~r1
~m! , . . . ,rm

~m!
!1Cm~r1

~m! , . . . ,rm
~m!

!#D nm

, ~8!

where) i 51
m *d2r i indicates a multiple integral over the positions of them disks belonging to a cluster, and the 1/m! factor is

to compensate for distinguishing among the disks. Following Eq.~8!, we continue with Eq.~7! to obtain

Jex5 )
m51

`

(
n50

`
1

n! FemmD /kBT
1

m! )
i 51

m E d2r ie2~Cm1Wm!/kBT)
i 51

m E d2pi

h2
e2pi

2/2ckBTG n

5 )
m51

`

(
n50

`
1

n! FemmD /kBTL22m
1

m! )
i 51

m E d2r ie2~Cm1Wm!/kBTGn

5expH (
m51

` FemmD /kBTL22m
1

m! )
i 51

m E d2r ie2~Cm1Wm!/kBTG J . ~9!
ne
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Assuming thatWm and Cm depend only on the relative
positions of the disks, we rewrite the integral in the last li
of Eq. ~9! as

L22m
1

m! )
i 51

m E d2r ie2~Cm1Wm!/kBT

5
1

m!
AL22L22~m21!E •••E dr1•••drm21

3e2@Cm~r1 , . . . ,rm21!1Wm~r1 , . . . ,rm21!#/kBT

[AL22e2Vm /kBT, ~10!

where them21 vectorsr1 , . . . ,rm21 describe the relative
positions of them disks. Substituting the definitions ofVm in
Eq. ~10! into Eq. ~9! yields the compact form of

Jex5expH AL22 (
m51

`

@e~mmD2Vm!/kBT#J . ~11!

The corresponding grand potentialAex is readily given by

Aex52kBT lnJex

52kBTAL22 (
m51

`

exp@~mmD2Vm!/kBT#. ~12!

The mean number of disks in the system,^N&, is the partial
derivative ofAex with respect tomD ,
^N&5AL22 (
m51

`

me~mmD2Vm!/kBT5 (
m51

`

m^nm&, ~13!

where we defined

^nm&5AL22e~mmD2Vm!/kBT ~14!

as the mean number of clusters of sizem. For a specificm
5m8, ^nm8& can also be obtained by taking the partial d
rivative 2]/](m8mD) of Aex.

To summarize this section, we point out that within t
paradigm of an ideal gas of disk clusters, the problem
evaluating the grand canonical potential of the system,Aex,
is reduced in Eq.~12! to the evaluation of the ‘‘partition
functions’’ ~10! of isolated clusters that consist ofm disks. In
Sec. IV we study the asymptotic case ofm@1, which is of
particular interest since it appears to be the one that de
mines the conditions at the phase transition between
a-embedded disk cluster-gas phase and theb-embedded
disk colloidlike phase~Sec. V!. Evaluations of the potentials
of small disk clusters will be dealt with in Sec. VI, where w
calculate a phase diagram for a particular model of h
disks.

IV. PHENOMENOLOGICAL
EFFECTIVE INTERFACE POTENTIAL

Under the assumption that the clusters under consi
ation are surrounded by a well defined interface line ofstiff-
nesss that separates the embeddingb phase from thea
background phase, the effective potentialWm in Eq. ~10! is
given by linearly coupling the length of the interface tos
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and the coverage of theb phase toP, whereP is the po-
tential difference per unit areabetween theb phase and the
thermodynamically favorablea phase@11#. Such aWm can
easily be written for any set ofr1 , . . . ,rm21 vectors, de-
scribing the positions ofm disks, but the calculations ofVm
according to its definition in Eq.~10! becomes very compli-
cated form.3. However, for very large values ofm, we can
assume that the clusters minimize the length of interface
unit area by having an underlying geometry of a circle
radius

Rm5A m

prm
, ~15!

whererm is thenumber densityof the disks inside a cluste
of sizem. Then we can approximate the wetting contributi
to Vm by replacingr 0 in Eq. ~5! with Rm , and by neglecting
the contribution coming from the wetting layer which su
rounds the whole cluster. Further, we assume that the co
bution toVm coming from the disk-disk interactions within
cluster of sizem, i.e., the potential associated with confinin
m disks within an area ofpRm

2 , which we shall denote by
VD , can also be written as a function ofrm . Consequently,
we obtain an approximatephenomenological potential

Vm52pRms1pP~Rm
2 2mr0

2!1VD~rm!

52Ap

rm
sAm1PS 1

rm
2pr 0

2Dm1VD~rm!.

5
2pr 0s

Ahm

Am1Fpr 0
2PS 1

hm
21D1vD~hm!Gm, ~16!

wherehm[pr 0
2rm is the volume fraction of the disks insid

the cluster andvD(hm)[VD(hm)/m. The first term in Eq.
~16! is the self-energy of a circular interface of radiusRm and
stiffnesss. The second term couples the area that is cove
by the thermodynamically unfavorableb phase toP.

The only independent parameter in Eq.~16! is hm . Thus
hm is defined by minimizingVD with respect tohm , i.e.,
]VD /]hm50, or,

05
pr 0s

hm
3/2

Am1S pr 0
2P

1

hm
2

2
]vD~hm!

]hm
D m⇒

hm
2

pr 0
2

]vD~hm!

]hm

5P1
s

r 0
Ahm

m
⇒Zm~hm!rmkBT5P1s/Rm , ~17!

where we have incorporated the fact thatRm5Am/prm

5r 0Am/hm, and thatZ[h(]vD /]h)/kBT is the disk com-
pressibility factor. In the thermodynamic limit, Z
5P/(rkBT), whereP is the pressure resulting from the co
loid disk interactions within a very large aggregate. Hen
we can read Eq.~17! as the pressure balance inside a ve
large cluster, where the expanding pressure due to the
interaction inside the cluster is balanced by the shrink
pressure due to the chemical potential difference and
Laplace pressure, resulting from the stiffness of thea-b in-
terface.

For further use we now define the dimensionless field
er
f

ri-

d

e
y
isk
g
e

x[r 0s/kBT,

y[r 0
2P/kBT, ~18!

and remember that we always operate in the limits ofx.1
and y,x @cf. Eq. ~4!#. With this nomenclature we can re
write Eq. ~16! in the dimensionless form

Um[VD /kBT52pxAm

hm
1mFpyS 1

hm
21D1 f ~hm!G ,

~19!

where f [vD /kBT.
Equation ~17! implies that in the limit of large enough

values ofm, hm is the solution of

h2
] f ~h!

]h
5py, ~20!

where in this limit f (h) can be taken to be the free energ
per disk in a pure system of disk colloids. Substituting th
solution into Eq.~19! yields that

lim
m→`

Um /m5pyS 1

h8
21D 1 f ~h8!, ~21!

whereh8 is them-independent solution of Eq.~20!. Hence
we notice that, in the limit of largem, the interfacial term in
Eq. ~16! is negligible and thatUm /m becomesm indepen-
dent.

BecauseVm @Eq. ~19!# grows monotonically withm, the
probability to observe large clusters in the system@cf. Eq.
~14!# is extremely low. However, as we learn in Sec. V, t
properties of the large cluster determine the conditions at
phase transition between thea-embedded disk cluster-ga
phase and theb-embedded disk colloidlike phase.

V. TRANSITIONS FROM A CLUSTER GAS OF DISKS
TO BULK COLLOIDAL PHASES

The value of the excess free energyAex in Eq. ~12! is
finite only as long as

lim
m→`

@Vm2mmD#>0. ~22!

Otherwise,Aex diverges, indicating an instability of the ga
phase and a phase transition. Recalling that for very la
values ofm, Vm /m reaches an asymptoticm-independent
value, we can conclude that this phase transition occ
when the value ofg[mD /kBT approaches@see Eq.~21!#

g* 5 lim
m→`

Um /m5pyS 1

h8
21D 1 f ~h8!. ~23!

Upon increasing the value ofg through g* , the system
changes from a phase that consists of finite~small! clusters
of disks, of which the size distribution is given by Eq.~14!,
to a phase that is rich in disks andb fluid, and has the
properties of a pure collection of disk colloids. This tran
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tion is first order since the value derivate ofA with respect to
mD , ^N&, jumps discontinuously asg reachesg* @see Eq.
~24! below#.

Noticing that the function exp(mg2Um) varies smoothly
with g, as long asg,g* , we can calculate the mean dis
volume fraction at the transition,h̄* , by taking the limit@see
Eq. ~13!#

h̄* 5pr 0
2 ^N&

A
5

1

z
lim

g→g* 2
(

m51

`

me~mg2Um!, ~24!

wherez[L2/(pr 0
2).

In a system with a fixed disk concentration,g→g* 2 leads
to a phase separation in which most of the disks aggre
into a large,b-rich domain. In such a system, the chemic
potentialmD depends on the number of disks. In the therm
dynamic limit, we can get an idea of this dependence
relating an̂ N&-dependent potential,Vex(^N&), toAex in the
standard way,

Aex5Vex~^N&!2mD^N&, ~25!

where ^N& is the expectationvalue of the total number o
disks in the system given by Eq~13!. A corresponding ex-
cess free energy per disk,vex, is given by@cf. Eqs.~12! and
~13!#

vex/kBT5
Vex

^N&kBT
52

(
m51

`

^nm&

(
m51

`

m^nm&

1g. ~26!

At the phase separation, whereg5g* , both (m51
` ^nm& and

(m51
` m^nm& diverge, but the ratio between them goes

zero, implying thatvex becomes approximatelyg* , as ex-
pected from the low density limit, in which the disks do n
contribute to the pressure in the system.

The solution of Eq.~20!, substituted into Eq.~23!, to-
gether with the ability to calculate exp(2Vm/kBT) for small
values ofm @according to Eq.~10!#, is what is needed as a
input in Eq.~24! when coming to draw a phase diagram th
would separate among regions ofa-embedded disk cluster
gas andb-embedded bulklike disk systems, and the cor
sponding coexistence regions. In the following section
study a particular case in whichf in Eq. ~20! describes a
system of hard disks.

VI. THE CASE OF HARD DISKS

In this section we apply the theory that we developed
the previous ones in order to calculate the phase diagram
contains regions ofa-embedded disk cluster-gas an
b-embedded bulklike disk systems, and the correspond
coexistence regions, in the case of disks that are not allo
to overlap with each other but do not interact otherwi
namely, the so-called hard disks. Hard disk is probably
simplest model of a two-dimensional system of colloids, b
it is also the only model for which analytical theories yield
good agreement with computer simulations as concerning
equation of state@6# and the thermodynamic conditions at th
te
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fluid-solid phase transition@7#. Thus we find it suitable for
demonstrating the applicability of the theory developed
this paper, yet remaining within an analytical framewo
We start by mentioning the theories we applied in calculat
the hard disk free energy per disk,f @cf. Eq. ~20!#, for the
fluid and solid phases.

A. Description in the bulk

The questions of whether two-dimensional systems
hibit a ‘‘true’’ fluid-solid phase transition, and whether th
transition is continuous or discontinuous, involving a hexa
intermediate phase or not, are, to different extents, still un
debate @14#. Numerous studies, supported by differe
computer-simulation techniques, have addressed these q
tions, and it has been shown that a structure factor tha
associated with a crystalline order can be measured in la
but finite two-dimensional systems. In systems of tw
dimensional colloids, the existence ofgas-liquidandsolid–
dense-solidtransitions on top of thefluid-solid transition
have been shown to depend on the range of the attrac
between the colloids@14#. However, in the most simple cas
of hard disks, i.e., disks that are restricted to regions whe
they do not overlap with each other but do not interact o
erwise, only two colloidal phases are observed,fluid and
solid. Extensive computer simulations have so far sugges
that the transition between these two phases are first or
without an intervening hexatic phase@15#. Comprehensive
theories in which one single expression for the free ene
would both account for the fluid and the solid phases o
hard disk system are not found. Instead, separate theorie
the fluid and solid phases have been developed, where
special symmetries of the solid phases are taken as an a
within a density functional representation of the solid pha
@16#. The transition points are then determined by compar
the two free energies and their derivatives, e.g., equating
corresponding pressures and chemical potentials.

In this paper we use an approximate analytical form
describe the excess free energy per hard disk in the fl
phase@6#,

f ex5E
0

h
dh8

Z~h8!21

h8

5

~2h021!lnS 12
2h021

h0
h D2 ln~12h/h0!

2~12h0!
, ~27!

where h is the disk volume fraction andZ5@122h
1(2h021)h2/h0

2#21 is a heuristic hard disk equation o
state that exactly reproduces the first two virial coefficie
and diverges at the crystalline close-packing volume fract
h05(A3/6)p. In comparison with other analytical approx
mations, Eq.~27! provides the best combination betwee
simplicity and agreement with results obtained by numeri
simulations@6#. f ex is added to the ideal part,f id5 ln(hz)
21, to give the dimensionless free energy per hard disk
the fluid phase,f F5 f ex1 f id . To calculate the free energy o
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the hard disk solid phase with the symmetry of a triangu
lattice, sayf S , we apply the differential formulation of the
GELA @7# with a Percus-Yevick-like approximate equatio
for the direct correlation function@8#,

C~d,h!52Q~12d!c0~h!F124h14hw2S d

2D1ds2~h!G ,
~28!

whered[R/(2r 0), Q(d) is the Heaviside step function,

w2~d!52
arccos~d!2dA12d2

p
, ~29!

c0~h!52
11h13ph22ph3

~12h!3
, ~30!

and

s2~h!5
3

8
h2

8~122p!1~2529p!ph2~723p!ph2

11h13ph22ph3
.

~31!

p5 7
3 2(4A3)/p is related to the approximate hard dis

equation of state,Z2(h)5(11ph2)/(12h)2, which exactly
reproduces the first two virial coefficients and is appropri
for use within the GELA that produces low effective liqu
densities in the description of the solid phase. As the wet
condition merely alters the pressure of the hard disk sys
@cf. Eq. ~17!#, there is nothing to stabilize the square latti
symmetry, and the GELA still predicts a stable tw
dimensional solid only on a triangular lattice.

As a check, we calculate the fluid and solid volume fra
tions at the hard disk fluid-solid transition point by solvin
for the equilibrium coexistence conditions,mfluid(hfluid)
5msolid(hsolid) and Pfluid(hfluid)5Psolid(hsolid), where m is
the hard disk chemical potential andP is the pressure. In a
very good agreement with the results obtained by amolecu-
lar dynamics simulation technique (hfluid50.691,
hsolid50.716, P/(kBTrCP)57.72) @17# and aMonte Carlo
simulation technique (hfluid50.690, hsolid50.724,
P/(kBTrCP)58.08) @13#, we obtain that at the fluid-solid
transition point, the corresponding volume fractions a
hfluid50.691, hsolid50.724, andP/(kBTrCP)57.73, where
rCP is the hard disk close-packing density.

B. Wetting controlled phase diagram

Having two hard disk phases, described by the two
mensionless free energies per disk,f F and f S , we obtain two
solutions to Eq. ~20!, hF8 and hS8 . Consequently,
limm→`Um /m in Eq. ~21! takes the lower of the two values
py(1/hF821)1 f (hF8 ) and py(1/hS821)1 f (hS8). Hence, a
change in our description of the large cluster occurs at
x-independent value ofy, say ytr , that is given by solving
numerically the equation set
r

e

g
m

-

e

i-

n

hF
2 ] f F~hF!

]hF
5py,

hS
2 ] f S~hS!

]hS
5py, ~32!

pyS 1

hF
21D1 f F~hF!5pyS 1

hS
21D1 f S~hS!.

In the case of hard disks we have obtained thatytr52.44,
which implies that values ofx that are larger than 2.44@cf.
Eq. ~18!# are required in order to remain in the comple
wetting regime~4! and apply our theory to describe the tra
sition between an a-embedded cluster gas and
b-embedded hard-disk solid.

We are now able to write Eq.~23! for the case of hard
disks,

g* 5H pyS 1

hF
21D1 f F~hF!, y,ytr

pyS 1

hS
21D1 f S~hS!, y.ytr ,

~33!

and learn from Eq.~26! that in the case of phase separatio
the hard disk system in theb-rich separated domain ca
either obtain the characteristics of a colloidal fluid pha
~when y,ytr), or the characteristics of a colloidal soli
phase~wheny.ytr).

To calculate the mean disk volume fraction at the tran
tion, h̄* , we should now apply Eq.~24!, which requires as
an input the exp(2Um) functions. In the case of hard disk
the only effect the disk colloid-colloid interaction has
avoiding the disks from overlapping, i.e., the distance
tween two disks is always larger than their diameter 2r 0.
ThenUm can formally be obtained from@cf. Eq. ~10!#

e2Um5
1

m!
L22~m21!E

ur1u52r 0

`

•••E
urm21u52r 0

`

3dr1•••drm21e2Wm~r1 , . . . ,rm21!/kBT, ~34!

where them21 vectorsr1 , . . . ,rm21 describe the relative
positions of them disks, and the integrations are carried o
under the restriction that for all values of 1< i , j <m21,
ur i2r j u.2r 0. Wm is the effective interface potential that w
here approximate by surrounding a given configuration om
disks by the shortest possible interface. For example,
dimensionless forms ofW1 , W2 , andW3 are ~see Fig. 3!

W1 /kBT52px, ~35!

W2 /kBT5~2p12R/r 0!x1~2R/r 02p!y, ~36!

where R[ur1u is the distance between the two disks@Fig.
3~a!#, and
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W3 /kBT5F2p1
R11R21R3

r 0
Gx1FA~R11R21R3!~R12R21R3!~R11R22R3!~2R11R21R3!

4r 0
2

1
R11R21R3

r 0
22pGy, ~37!

whereR1[ur1u, R2[ur2u, andR35AR1
21R2

222R1R2cosu are the pair distances between the three disks. In the coeffic
of x in Eqs. ~36! and ~37!, the first term corresponds to the interface wetting the disks, and the second one to the in
bridging between them. In the coefficient ofy in Eq. ~36!, we subtract the area of a disk from the area of the rectang
defined by the four meeting points of the bridging interface with the disks. In the coefficient ofy in Eq. ~37!, the first term
corresponds to the area of the triangle formed by connecting the centers of the disks, the second term correspon
complementary area emboarded by the bridging interfaces, and the third~negative! term is the reduction of the area of th
disks that was included in the two previous terms.

Substituting Eq.~36! into Eq. ~34! yields the result

e2U25
1

2!
L222pr 0

2E
2

`

le2@~2p12l !x1~2l 2p!y#dl5
~x1y!11/4

z~x1y!2
e2@~2p14!x1~42p!y#, ~38!

wherel[R/r 0 andz[L2/(pr 0
2), and substituting Eq.~37! into Eq. ~34! yields the integral

e2U35
1

3!
L24r 0

4E dl1E dl2e2$@2p1 l 11 l 21 l 3#x1@A~ l 11 l 21 l 3!~ l 12 l 21 l 3!~ l 11 l 22 l 3!~2 l 11 l 21 l 3!/41 l 11 l 21 l 322p#y%

52
2p

3!~zp!2
e22p~x2y!E

2

`

dl1 l 1E
2

`

dl2 l 2E
umin

p

due2$@ l 11 l 21 l 3#x1@A~ l 11 l 21 l 3!~ l 12 l 21 l 3!~ l 11 l 22 l 3!~2 l 11 l 21 l 3!/41 l 11 l 21 l 3#y%,

~39!
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where l i[r i /r 0, i 51 and 2, are the scaled position vecto
of two disks relative to a third one that is located at t
origin, andl3[ l22 l1. l i[u l i u5Ri /r 0, i 51,2, and 3, are the
dimensionless distances between the disks.u is the angle
between l1 and l2 such that l 35Al 1

21 l 2
222l 1l 2cosu, and

umin[arccos@( l 1
21 l 2

224)/(2l 1l 2)# is the lowest valueu can
take for given values ofl 1 and l 2 under the hard core cond
tion l 3>2. The symmetry in the case of three disks allows
to replace the integration overu from p to 2p by the factor
2, on top of the 2p factor that accounts for the rotation
invariance of the system.

Because the integrands in Eqs.~38! and~39! decay expo-
nentially, and vanish at distances much smaller than
mean distances between clusters in the dilute limit, we al
the upper integration limits to reach infinity without affectin
the results. Equation~39! can still be integrated numericall
for given values ofx, y, andz, but, for values ofm that are
larger than 3, integrating Eq.~34! becomes a formidable
task. However, forg,g* , exp(mg2Um) is a monotonically
descending function and for a certain range of thex, y, andz

parameters a good approximation ofh̄* can be obtained
cutting the sum in Eq.~24! at m53. The choice of three doe
of course not apply in general, and the cutoff value ofm
should be determined according to the required precision
given values ofx, y, andz.

In Fig. 4 we plot versusy both @(m51
3 m exp(mg*

2Um)]/z, as an approximation forh̄* @Eq. ~24!#, andh8, the
disk volume fraction in the largeb-rich domains@see Eq.
s

e
w

or

~21!#. Two values ofx are considered,x51.2 and 1.5, and
we keep the value ofT fixed, in the region whereTW,T
,TC @cf. Eq. ~4!#, so that in all our calculationsy}P. We
have chosen small values ofx in order to broaden the cluster
gas region in a phase diagram that would also include h

values ofh̄ . This allows the full topology of the phase dia
gram to appear in a single figure. However, it should
noted that for values ofy that exceed the given values ofx,
our theory has to be modified as we leave the complete w
ting regime~4! @cf. Eq. ~18!#. The main modification would
include corrections to the interfacial stiffness associated w
thin wetting films at the disk surfaces, but this would n
change the topology of the phase diagram. We avoid do
that for the sake of simplicity. The graph~phase diagram! we
obtain separates among regions ofa-embedded disk cluster
gas andb-embedded hard disk systems, and the correspo
ing coexistence regions. More specifically, whenh̄ , the
mean volume fraction of the disks, reachesh̄* from below,
the system phase separates and thea-embedded disk cluste
gas coexists with ab-embedded colloid phase of hard dis
with a local volume fractionh8 that is determined by Eq
~21!. Upon further increase inh̄ , the pressure in the system
remains unchanged and the extent of theb-rich domain
grows but without change in the density of the disks inside
until the point ofh̄5h8 is reached and thea fluid becomes
metastable in the bulk. For values ofh̄ larger thanh8, the
pressure in the system is no longer dictated by the value oy,
but by the equation of state of ab-embedded hard disk sys
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FIG. 4. A calculated phase diagram that contains
gions of a-embedded disk cluster gas,b-embedded hard
disk liquid, b-embedded hard disk solid, and the corr

sponding coexistence regions in the (h̄ -y) plane. The dif-
ferent regions are labeled by insets, which are schem
illustrations of the characteristic equilibrium configuration
and in which the white and gray backgrounds represent
a and b phases, respectively.x51.2 andT is kept fixed,
TW,T,TC , so thaty}P. At mean disk-density values fo
which thea-phase is not stable, the system takes the eq
librium pressure of the correspondingb-embedded hard
disk system, independently of the values ofy. In the case of
x51.5, the condensation line is represented by the das
line. The horizontal three-phase line extends in this cas
connect with the dashed line but the rest of the phase
gram remains unchanged.
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tem with a volume fractionh̄ and a temperatureT. Thus, as
h̄ reaches the value ofhfluid50.691, a fluid-solid phase sepa
ration occurs untilh̄ reaches the value ofhsolid50.724 and
the hard disk system turns solid. In all the relevant calcu
tions f 5 f F , for y,ytr , and f 5 f S , for y.ytr . At y5ytr ,
h8 jumps fromhF8 to hS8 . These two values are determine
by the solution of the equation set~32! and are very close to
hfluid50.691 andhsolid50.724, which are the correspondin
values at the fluid-solid hard disk transition point.

The lower values ofh̄ at which the phase separation o
curs,h̄5 h̄* ~Fig. 4!, grow with y. The speed of this growth
goes down with the increase in the value ofx, due to higher
values of the interfacial stiffnesss or the radius of the disks
r 0.

The justification in takingm53 as a cutoff whenx51.2
can be evaluated visually in Fig. 5, where we plot exp(g*
2U1)/h̄* , 2 exp(2g*2U2)/h̄* , and 3 exp(3g*2U3)/h̄* as
functionsy. Up to y'ytr , the expectation number of disk
that are found as dimers and as trimers grows withy at the
expense of the expectation number of monomers. Th
numbers fall modestly fory.ytr . The reason is thatg*
grows faster with y when y,ytr @cf. Eq. ~33!#, while
exp(2Um) descends withy @cf. Eq. ~38!#. Under the condi-
tions in which the data shown in Figs. 4 and 5 are calcula
the number of disks that form monomers does not get be
80%. Not more than 25% of the disks are ever expecte
form dimers, and not more than 4% to form trimers. Th
neglecting the contribution coming from clusters with mo
than three disks is a good approximation in the exam
presented here.

VII. CONCLUSIONS

In general, we have developed an analytical method
calculating the phase diagram of a two-dimensional mixt
of disk colloids with two fluid components (a andb), to one
of which (b) the disks show a preferential affinity, close
-

se

d,
w
to
s

le

r
e

the fluid-fluid (a-b) first-order phase transition line. In pa
ticular, we have calculated an approximate phase diagram
the case of hard disks in the complete wetting regime~4!,
and observed how the wetting condition adds a gas-liq
transition to a system of hard disks that otherwise show o
a fluid-solid transition. This property disappears fory>ytr ,
wherey5Pr 0

2/kBT, andytr is the value that corresponds t

FIG. 5. An estimate of the probability to find a disk in a clust

of sizem, m exp(mg*2Um)/h̄* , versusy, at the transition value of
the disk chemical potentialmD5g* kBT. x51.2, and the tempera
ture is the same as in Fig. 4.
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the triple point. Experiments, theory, and computer simu
tions have shown that the existence of the vapor-liquid tr
sition in systems of colloids depends on the range of
effective colloid-colloid attraction, and that the liquid collo
dal phase disappears when the width of the attractive w
becomes less than approximately one-third of the diamete
the colloidal spheres@14#. In this sense decreasingy in our
model, i.e., approaching thea-b transition conditions, cor-
responds to increasing the effective range of the pair in
actions in systems of interacting disks.

Our method can be applied in three spatial dimensi
where a different method@5# has qualitatively predicted a
phase diagram that resembles Fig. 4 with two exceptio
one, the earlier studies do not provide a distinction betw
the different b-rich colloidal phases; two, the prewettin
transition line, which distinguishes between regions of w
and non-wet spheres in three dimensions, is not expecte
two dimensions@11#. Moreover, the framework develope
here enables the calculation of the phase diagram in la
regions of the parameter space than before.

Our theory can be extended to deal with dilute system
disks outside the complete wetting regime@Eq. ~4!#. To do
that we need to take into account more configurations of
a-b interface line than the shortest one surrounding the d
in a cluster@cf. Eqs. ~35!–~37!# and define two interfacia
stiffnesses: one, for thea-b interfaces that bridges betwee
disks, and another one, for the disk-fluid interfaces, outs
the complete wetting regime, where the surface of the d
is not wetted by ab-like fluid. However, the qualitative be
, i
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havior observed in this study is not expected to change
order to include the vicinity of thea-b critical point, the
corresponding scaling behavior of thea-b interfacial stiff-
nesss would have to be included.

In our description of the hard disk colloidal system, w
have increased the precision in comparison to previous
culations@7# by applying Eq.~27! for the fluid phase, and
simplified the numerical procedures by applying the appro
mate analytical form of Eq.~28! for the direct correlation
function within the GELA.

Our results are relevant under the general interest in
effect the embedding medium can have on the phase be
ior of colloids. As a particular case, they can be related to
effect the state of lipids in biological membranes can have
the organization of large inclusions embedded in them, e
they can provide a guide for experimentalists to optimize
conditions for protein aggregation and protein crystallizat
in protein lipid recombinants@4#.
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