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Wetting controlled phase transitions in two-dimensional systems of colloids
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The phase behavior of disk colloids, embedded in a two-dimensional fluid matrix that undergoes a first-order
phase transition, is studied in the complete wetting regime where the thermodynamically metastable fluid phase
is stabilized at the surface of the disks. In dilute collections of disks, the tendency to minimize the extent of the
fluid-fluid interface and the extent of the unfavorable wetting phase in the system gives rise to aggregation
phenomena and to separation of large domains of disks that have the characteristics of bulk colloidal phases.
The conditions for phase transitions among cluster gas, liquid, and solid phases of the disk colloids are
determined from the corresponding values of the disk chemical potential within an analytic representation of
the grand partition function for the excess energy associated with a gas of disk clusters in the low-disk-density
limit. The wetting effective-interface potential is combined with the disk interaction potential in associating an
internal energy with each one of the clusters. The theory can thus be applied to any type of interaction potential
among disks, provided that the free energy associated with the corresponding bulk colloidal phases is available.
A phase diagram is calculated explicitly for the case of hard disks on the basis of an analytical approximation
for the free energy of the hard disk fluid phase and the generalized effective liquid approximation for the free
energy of the hard disk solid phag&1063-651X98)00203-1

PACS numbefs): 68.45.Gd, 64.70-p, 82.70.Dd

I. INTRODUCTION approached. Consequently, one can expect a transition from
an a-embedded cluster gas of disks togBarich phase of

In general, when two thermodynamic phaseand are  disks, which has the characteristics of a bulk phase of disk
close to coexistence, i.e., close to a first-order phase trangtolloids.
tion line, the presence of a substrate strongly “preferring” From the theoretical side, wetting-induced flocculation
one of the phases leads to singueetting effects[1]. The  phenomena have been studied by applying a Ginzburg-
preferred phasg tends to form a layer intruding between Landau model to describe the embedding fluid matrix by a
the substrate and the other phaseeven when the latter is one-component order parameter, which is coupled to the co-
stable in the bulk. In theomplete wettingegime, the thick-
nessl,y of the layer diverges continuousliyy,—, as the p
bulk «— B phase transition line is approachéeg. 1).

Wetting of silica spheres by fluid lutidine3) in a water
solution («), close to the fluid water-lutidine coexistence
conditions, was first suggested as the cause for their rever
ible aggregation, calleflocculation in the celebrated paper
by Beysens and Este\@]. Subsequently, particle aggrega- p_|
tion phenomena have been reported in several other phas
separating binary mixturd$]. Recently, based on computer
calculations on a pseudo-two-dimensional microscopic
model of lipid-protein interaction, wetting was suggested as
a means of protein organization in membraps These are
particular examples within the general interest in how the
phases exhibited by systems of colloids are manipulated b
controlling the properties of their embedding environment.
Concordantly, in this study we consider arembedded two- ‘TW ‘TC T
dimensional dilute system ¢f-wet disk colloids in the com-

plete wetting regime, Clqge to the-B first-order transi_tion FIG. 1. The generic phase diagram for wetting by one of two
line. The tendency to minimize the extent of theg fluid-  qig phases g) at the bulk coexistence line with the othe)(
fluid interface and the extent of the unfavorajlephase in shown by a thick solid lineCritical wetting transition occurs aTy

the system gives rise to aggregation phenomena that reflegy increasing the temperature along tes coexistence curve, as
the balance between those tendencies, and the tendency digown by path(1). For T>T,,, any path taken in the direction of

increase entropy by separating the disks from each othethe arrow(2) would terminate in a continuousomplete wettings
This balance changes as theg first-order transition line is  the a-8 coexistence curve is approached.

fluid B (liquid)

fluid o (gas)
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ordinates that represent the location of sphere collfids where A=W¥/W¥°. The values of the exponent&® and ¥
Based on this model, simple thermodynamic considerationdepend on the spatial dimension of the system under consid-
have led to a qualitative phase diagram, including regions oération[1].
a-embedded sphereg:embedded spheres, and the coexist- Increasing the thickness of a wetting layer around a
ence of the two phases. Computer calculations on the modepherical, or a cylindricalcircular, substrate leads to an
have led to more precise topologies of the different phasesncrease in the aregength of the interface. The correspond-
but consumed more computation time than to allow the proing increase in the interfacial free energy suppresses com-
duction of a full phase diagram. plete wetting atll=0. Hence the divergence of the mean
In this study we exploit the simplicity involved in the thickness of the wetting layer can only occur in the limit
effective interface potential description of the wetting phe-where the curvature of the substrate vanishes, adding this
nomenology (Secs. Il and IV. Its application within a curvature as a third field in the scaling description. In two
straightforward and exactly solvable way of writing the dimensions, the mean thickness of the wetting layer around a
grand partition function for the excess energy associatedircular disk of radius , was shown to obey the scaling form
with a gas of disk clusters in the low-disk-density lirfBec.  [9]
[II') is the basis for a theory that enables the calculation of the

conditions at which flocculation occurs. More specifically, ETCRT:V const, x=0
we relate the value of the disk chemical potential at the tran-  |w=¢" “To Y(IIro/o),  YO)=) cag o
sition betweern-embedded disk cluster gas ageémbedded 2)

disk systems to the chosen thermodynamic control param-

eters(Sec. V). The entropy associated with the spatial orga-where ¢ is the stiffnessof the a-g interface.o defines a
nization of the disks plays a crucial role in the description oflength scale in the system that we shall call thék corre-
our system, and the total number of phases the system elation length

hibits depends on the number of colloidal phases the disks

exhibit in the bulk. In Sec. VI we calculate quantitatively the &=kgT/0o, 3
phase diagram that separates among regionserhbedded ) ,

hard disk cluster-gas angtembedded hard disk systems, andWherekg is the Boltzmann constant arfdis the temperature
the corresponding coexistence regions. Within the equilib[10- From Egs.(2) and (3), the complete wetting regime

rium regions ofg-embedded hard disk systems, we distin-1-€" the condltl_ons for thlelsemergence of a macroscopic wet-
guish between fluid and solid hard-disk colloidal phases, ading layer of thickness-rg™ much larger than the molecular
suming this transition to be first order. We describe the fluigdistances=¢y, is defined a$11]

hard disk phase by an approximate analytical form for the
free energy, which provides the best combination between
simplicity and agreement with results obtained by numerica,
simulationg[6]. For the solid phase we apply the differential
formulation of the generalized effective liquid approximation
(GELA) [7] with an approximate analytical expression for
the direct correlation function of hard disks within the
Percus-Yevick equatiof8]. We start our discussion by in-
troducing the effective interface potential in the description
of wetting in circular geometry.

ro>§b, TW<T<TC1 (T/r0>H—>O+, (4)

!/vhereTC is the bulka- B critical point andTyy is the wetting
temperature for the analogous flat system.

The replacement of the density profile of the fluid-fluid
(a-B) interface by a sharp kink, to which a local interfacial
stiffness ) is attached, is valid in the complete wetting
regime[1], where the wetting of a disk is properly described
by aneffective interface grand canonical potentj&l,11]

Q) =2mV(lw) +27a(ro+lw) + 7 (ro+1w)?—r3],
II. WETTING IN CIRCULAR GEOMETRY - (5)

A RECOLLECTION

In planar geometry, a scaling description of the meanWhere V(R)=0.948(ksT)*/(0R’). The term alll(ro
, 2 27 0 :
thickness of the wetting layer is achieved in terms of tw0+|W) o] in this equation accounts for the excess energy

orthogonal fields: one pressurelike fidldmeasures the dif- of the thermo?Tynan:LlTalI)z/_unzfa.w;rabké pﬂ?se,.w?rl]ch C?fv )
ference in the grand canonical potentials per unit volgang 'S 8N area o [(rotlw)"—rol: .Tm(ro w) is the self-
area in two-dimensional geomelrgf the two bulk phases: energy_of the interface, anq the flrst_ term represents t_he loss
the other, temperaturelike fieldis a generalized coordinate of configurational entropy involved in preventing the inter-

measuring the distance from the wetting transition poinﬁrace from crossing the surface of the subst&ieV(R) is of
(Pw,Ty) along the coexistence line shown in Fig. 1. In onger range than the relevant van der Waals substrate-

terms of these fields, the continuous growth of the wettin jnterface interaction potential, which is proportional in two

. . 73 . . . _
. . _ye dimensions tar/RP™° in the limit of R<r,, wherep=6
Iay(z)el |si,n C?htaggenq;?edtebzvggﬁl gp(:(\;v;rm(laawé@,ocl HI o t“i' Ht and 7 for nonretarded and retarded interactions, respectively
- 1 1 1

N . : . [9], and is therefore the only relevant interaction potential in
—07, along the coexistence line. The comprehensive dege problem[12]. The case of wetting of a single disk is
scription is achieved with a scaling functioh(x) and a jystrated in Figs. 23 and 2b), via microconfigurations
two-parameter scaling form generated in a computer-simulation calculation on a micro-
const. X0 scopic interaction modgH].
BT A _ ' Under the conditions for wetting of a single disk, bringing
lw~t Y ®[II/t?], D(x) _ye (1) ; _ : .

X', X—to, two disks close to each other gives rise to two different to-
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(©)

FIG. 2. lllustration of wetting phenomena around circular disks embedded in a binary fluid neg8 @hase transition. The two phases
are indicated by light4) and dark 8) gray tones, respectively. The disks, which have a preference for phase colored white(@ The
case of a single disk outside the wetting regime where only a microscopically thin layer ofpiapeesent at the interface, corresponding
to the case of interfacial adsorptiofin) The case of a single disk in the complete wetting regime. A thick layer of pBasenucleated at
the surface of the diskic) The case of two nearby disks in the complete wetting regime, where the wetting layers overlap, leading to
capillary condensation. The data for the figures are obtained from computer-simulation calculations on a microscopic model of lipid-protein
interactiong4].

pologies of thea-B interface line: one involving tweepa-  aggregation force is caused by the tendency of the condensed
rate loops, closing around each one of the disks individuallysystem to reduce the length of theg interface and the
[Fig. 3@ (sep]; and one involving a single loop wrapping coverage of the3 phase by reducing the distance between
the two diskgFigs. 3a) (bri) and Zc)]. The latter is due to the disks. Capillary-wave fluctuations of the interface were
capillary condensatiotetween the two disks that occurs to shown not to effect its mean position in the regions where it
minimize the excess free energy that is associated with grigges between the two disks and that, to leading order, the

given length of thex-g interface and a given coverage of the mean position of the remaining interface is given by the
thermodynamically unfavorabl@ phase. A transition be- theory for the single disk11].

tween theseparatedand bridged configurations can be in-

duced by tuning either the distance between the disks or by

c_hanging th_e thermodynam@c conditions for the sys'Fem, e.g., IIl. GRAND CANONICAL POTENTIAL

via II. Capillary condensatlon_ between two wet dls_ks can FOR A DILUTE COLLECTION OF DISKS

already take place when the distance between the disks is of

the order of their radiusy. It involves a dramatic increase in Now consider a system df identical “g-preferring”

the local concentratiofor rather the coveragef the wetting  mobile disks of radius,, immersed in an fluid. According
phaseB, and introduces a new effective force in the systemto the study of capillary condensation between two disks
giving rise to a net attraction between the dik4]. The [11], it is reasonable to expect that by tuning the chemical
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B phase. The tendency to increase translational entropy
would push the disks apart as well as give rise to a certain
cluster-size distribution once clusters are formed. The way
the disks (colloids) would arrange themselves inside the
clusters is controlled by the interplay betweeanfigura-
tional entropy, dominating in the colloid fluid phase, and the
entropy offree volumeper disk, dominating in the colloid
crystalline phas¢13].

We write theexcesgyrand canonical potential associated
with the creation of clusters in a dilute collection of identical
disks in the limit where the interaction among the clusters is
negligible. More precisely, we take into account disk-disk
interaction potentials only between disks within the same
cluster, and neglect direct interactions between disks that be-
long to different clusters. The sizes of the clusters are param-
eterized bym, which denotes the number of disks in a clus-
ter. By n,, we denote the number of clusters consistingrof
disks, and by{n.,} a distribution of cluster sizes. Given a set
{nn}, we can write the contribution of theret disks to the
Hamiltonian of the system as

m=1 k=1
m p2
_’_Cm(r&m,k), ’r(m k))+2 m,kK,i , (6)
=1 2c

where {n,,} is subject to the restrictioX, _,mn,=N, N
being the total number of disks in a given realization of the
systemc is the mass of each one of the disks, afg ;/2c

is the kinetic energy of théth disk in thekth cluster that
consists ofm disks. For all clusters ofm disks the same

(b) W (ry, ... ry) andC(ry, ... ry) functions are defined
as aneffective interface potentialnd a diskcolloid-colloid
FIG. 3. lllustration of the model interface lines to which a phe- jhteraction potential, respectively, Wherém )L ,rsnm )

Fhomenolog?caltinéerfa(t:tigl Stiﬁrt]esf ils ,atthChed Whe? tdeterm;ni;g are the positions of then disks that belong to the same
1€ approximated wetling potential in the case ot two and treq,, srar \WhileC,, depends on the positions of time disks
disks: (a) Two two-dimensional disks of radius, separated at a

distanceR. The wetting layers surrounding each one of the disksInSIde th_e cluster, r_elatlve to each Otm’m depends only on
(sep remain separated until is sufficiently small to allow for the the p(.)s'tlon of the interface surrounding the cluster. A point
formation of a bridging interfacébri) [11]. As an approximation, to Wr_"Ch we return later. . ) )

the bridging interface is taken to be a straight line, tangential to the With the help of a chemical potentialp , which controls
surfaces of the two disk@pp. (b) Three two-dimensional disks of the total number of disks in the system, we Qeflne and cal-
radiusr, separated at a distanc&s, R,, and Rs. The interface  culate theexcessfactor due to the wet disks in thgrand
mean position is approximated by connecting the surfaces of thartition function of the system as follows:

disks with tangential straight lines.

0 Nm=0 nydnyt--ongt---

M s

ee]
ex— 2

n;=0 ny

Il

potential for the fluids close to the-8 transition line(but on
the a side one would reach a region where the disks tend to d’p' .

aggregate and form clusters of disks withBarich phase <1 J?dzrl{exq(MDN_Hex)/kBT]}r )
filling the space between them. Within the effective descrip- '

tion of the a-B interface[cf. Eq. (5)], we define a cluster as

a collection of disks surrounded by the sames interface  whereh is Plank’s constant and =h/(27ckgT)™* is the
line. When neglecting direct interactions between the diskghermal (de Broglig wavelength associated with a disk of
(apart from the excluded-volume hard disk interactjpttse ~ massc. I1;fd®p'd?r' indicates a multiple integral over all
size of those clusters and the cluster-size distribution argossible values of the components of the momenpyrand
controlled by the balance between different entropy effectghe positionr; of every disk for a given cluster-size distribu-
and the capillary forces which are involved in minimizing tion {n}. Here we have couplefl; to the total number of
the total length of ther-3 interface and the coverage of the disks,N=X,_,mn,,, for each distributionn}, and inte-

)1/2
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grated over all possible cluster distributions and thus over all possible vallesfiaf we neglect interactions between clusters

and between disks that belong to different clusters, all clusters of the same size within a given distfilticontribute
equally to the trace in Eq7). Thus we can write

o 1 m Nm
; (m) (m) (m) (m)
— I I ( I I er|e[Wm(r1 ..... Tm ) HCm(ry 7y ..o, "' m )]) , (8)

whereHi”‘:lderi indicates a multiple integral over the positions of thalisks belonging to a cluster, and theml/factor is
to compensate for distinguishing among the disks. Following(8q.we continue with Eq(7) to obtain

m i n
. d?p' _ >
@Mup /kBT H d2rie—(Cm+ Wm)/kBTH f hf @~ Pil2ckgT
! =1

m=1 n=0
o) (e 1
— H E | eMup/keTA - 2m H fdz ie=(Cm +Wm)/kBT
m=1 n=o0 N! i=
=exp{ 2 @Mup /kgT A —2m_—_ H dzrie—(cm+wm)/kBTH_ 9)
m=1 !
|
Assuming thatw,, and C,, depend only on the relative > %
positions of the disks, we rewrite the integral in the last line (Ny=AA "2, me™oVa/keT=> m(n.), (13
of Eq. (9) as m=1 m=1
" where we defined
A* m| Il_ll erIe (Cnt W)/ kgT <nm>=AA_2e(m'“D_Vm)/kBT (14)
1 as the mean number of clusters of sime For a specifian
= HAA*ZA*(”‘*”J J dry---drp_y =m’, (n,,) can also be obtained by taking the partial de-
‘ rivative — g/ d(m’ up) of Agy.
x e [Cmlry, .-, "m-1)+Wmn(rg, .. 'm-1)1/kgT To summarize this section, we point out that within the
paradigm of an ideal gas of disk clusters, the problem of
=AA"2e Vm/ksT, (100 evaluating the grand canonical potential of the systdm,
is reduced in Eq(12) to the evaluation of the “partition
where them—1 vectorsrq, ... r,_; describe the relative functions” (10) of isolated clusters that consistmfdisks. In
positions of them disks. Substituting the definitions ¥f,in  Sec. IV we study the asymptotic casero$ 1, which is of
Eq. (10) into Eq. (9) yields the compact form of particular interest since it appears to be the one that deter-
mines the conditions at the phase transition between the
o a-embedded disk cluster-gas phase and fhembedded
= exp{ AA2D [elMep~Vm/keT]h (11)  disk colloidlike phaséSec. \). Evaluations of the potentials
m=1 of small disk clusters will be dealt with in Sec. VI, where we

calculate a phase diagram for a particular model of hard

The corresponding grand potentidl, is readily given by ~ disks.

Aex= —kgT INE g IV. PHENOMENOLOGICAL
EFFECTIVE INTERFACE POTENTIAL

=—kgTAA 2D, exd (Mmup—Vm/kgT]. (12 Under the assumption that the clusters under consider-

m=1 ation are surrounded by a well defined interface linatdf-

nesso that separates the embeddiggphase from thex

The mean number of disks in the systefN), is the partial background phase, the effective potentd}, in Eq. (10) is
derivative of 4., with respect toup, given by linearly coupling the length of the interface do
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and the coverage of thé phase tall, wherell is the po- X=ro0/kgT,

tential difference per unit arebetween thg3 phase and the

thermodynamically favorable phase[11]. Such aw,, can y=r3ll/kgT, (18)
easily be written for any set aof, ... r,_, vectors, de-

scribing the positions ofn disks, but the calculations &f,,  and remember that we always operate in the limitxofl
according to its definition in E10) becomes very compli- andy<x [cf. Eq. (4)]. With this nomenclature we can re-
cated form>3. However, for very large values of, we can  write Eq.(16) in the dimensionless form

assume that the clusters minimize the length of interface per

unit area by having an underlying geometry of a circle of m
radius m=Vp/kgT=2mX\/—+m

(2 a }
- Ty " (7m) |,

(19
_ ™
Rm= N 7pm 19 \heref=vp /kgT.

Equation(17) implies that in the limit of large enough
wherep,, is thenumber densitpf the disks inside a cluster values ofm, 7, is the solution of

of sizem. Then we can approximate the wetting contribution

to Vi, by replacingr, in Eg. (5) with R,,,, and by neglecting ,9f(7m)

the contribution coming from the wetting layer which sur- 7 W:Wy’ (20
rounds the whole cluster. Further, we assume that the contri-

bution toV,, coming from the disk-disk interactions within a where in this limitf(7) can be taken to be the free energy

cluster of sizem, i.e., the potential associated with confining per disk in a pure system of disk colloids. Substituting this
m disks within an area ofrR2,, which we shall denote by solution into Eqg.(19) yields that

Vp, can also be written as a function pf,. Consequently,

we obtain an approximatghenomenological potential 1
limUp/m=my| —=1|+f(7n"), (22

Vim=27Rpno+ wII(RE—mr3) + Vp(pm) e 7
T 1 ) where ' is the m-independent solution of Eq20). Hence
=2 EU\/EJFH a_ 7o | M+ Vp(pm). we notice that, in the limit of largen, the interfacial term in
Eq. (16) is negligible and that ,,/m becomesn indepen-

277["00' 2 1 dent
= NEw Jm+| w3l 77——1 +vp(7m) M, (16) BecauseV,, [Eq. (19)] grows monotonically wittm, the
m m

probability to observe large clusters in the systih Eq.
(14)] is extremely low. However, as we learn in Sec. V, the
properties of the large cluster determine the conditions at the
phase transition between theembedded disk cluster-gas
Bhase and th@-embedded disk colloidlike phase.

where 7= 7t 3p, is the volume fraction of the disks inside
the cluster and p(7y)=Vp(7y,)/m. The first term in Eq.
(16) is the self-energy of a circular interface of radiRig and
stiffnesso. The second term couples the area that is covere
by the thermodynamically unfavorabl phase td.

The only independent parameter in Ei6) is 7,,. Thus V. TRANSITIONS FROM A CLUSTER GAS OF DISKS
7m IS defined by minimizingVy with respect toy,,, i.e., TO BULK COLLOIDAL PHASES
Npldn,=0, or, The value of the excess free energly, in Eq. (12) is

5 finite only as long as
Il oo oy L dvp(7m) 7m0 p(7m)
07 | ez - 20U | i 00 (m) oy
a2 ( 0 7 9 7m w2 I7m nl:Tx[Vm mup]=0. (22
1+ 2/ IS 7 () paksT=T1+ /R, (17)  Otherwise, A, diverges, indicating an instability of the gas
ro V. m

phase and a phase transition. Recalling that for very large
values ofm, V,,/m reaches an asymptotim-independent
value, we can conclude that this phase transition occurs
when the value ofj= up/kgT approachegsee Eq(21)]

where we have incorporated the fact tHat,=Vm/m7pp,
=roVvm/ ny, and thatZ= n(dvp/dn)/kgT is thedisk com-
pressibility factor In the thermodynamic limit, Z

=P/(pkgT), whereP is the pressure resulting from the col- 1
loid disk interactions within a very large aggregate. Hence g* = lim Um/mzwy(__l) +f(75'). (23
we can read Eq(17) as the pressure balance inside a very m—oo 7'

large cluster, where the expanding pressure due to the disk

interaction inside the cluster is balanced by the shrinkindJpon increasing the value of through g*, the system

pressure due to the chemical potential difference and thehanges from a phase that consists of fifgal) clusters

Laplace pressure, resulting from the stiffness of#h@ in-  of disks, of which the size distribution is given by HG4),

terface. to a phase that is rich in disks an@l fluid, and has the
For further use we now define the dimensionless fields properties of a pure collection of disk colloids. This transi-
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tion is first order since the value derivate.éfwith respectto ~ fluid-solid phase transitiofi7]. Thus we find it suitable for
up, (N, jumps discontinuously ag reachesg* [see Eq. demonstrating the applicability of the theory developed in
(24) below]. this paper, yet remaining within an analytical framework.

Noticing that the function expig—U,,) varies smoothly We start by mentioning the theories we applied in calculating
with g, as long asg<<g*, we can calculate the mean disk the hard disk free energy per disk/[cf. Eq. (20)], for the
volume fraction at the transition;*, by taking the limiffsee  fluid and solid phases.

Eq. (13)]
_ Ny 1 °° A. Description in the bulk
n*=wrgu=— lim >, megmdUm, (24) _ _ _
A Zgﬂg*,m=1 The questions of whether two-dimensional systems ex-
hibit a “true” fluid-solid phase transition, and whether this
WhereZEAZ/(Trrg). transition is continuous or discontinuous, involving a hexatic

In a system with a fixed disk concentrati@i~g* ~ leads  intermediate phase or not, are, to different extents, still under
to a phase separation in which most of the disks aggregaigebate [14]. Numerous studies, supported by different
into a large,-rich domain. In such a system, the chemical computer-simulation techniques, have addressed these ques-
potentialup depends on the number of disks. In the thermo+jons, and it has been shown that a structure factor that is
dynamic limit, we can get an idea of this dependence bysssociated with a crystalline order can be measured in large
relating ar(N)-dependent potentiafe,((N)), to Aexinthe  put finite two-dimensional systems. In systems of two-
standard way, dimensional colloids, the existence gés-liquid and solid—

. _ dense-solidtransitions on top of thdluid-solid transition
Ae= Qe (N)) = 10(N), @9 have been shown to depend on the range of the attraction
where(N) is the expectationvalue of the total number of between the colloidEl4]. However, in the most simple case
disks in the system given by E@3). A corresponding ex- Of hard disks i.e., disks that are restricted to regions where

cess free energy per disk,,, is given by[cf. Egs.(12) and  they do not overlap with each other but do not interact oth-
(13)] erwise, only two colloidal phases are observédid and

solid. Extensive computer simulations have so far suggested

i that the transition between these two phases are first order,
o = {Nm) without an intervening hexatic phas&5]. Comprehensive
Wey/KgT= (NYkeT =—— +0. (26)  theories in which one single expression for the free energy
B E MmNy would both account for the fluid and the solid phases of a
m=1 m hard disk system are not found. Instead, separate theories for

the fluid and solid phases have been developed, where the
At the phase separation, whege=g*, both=_;(n,) and  special symmetries of the solid phases are taken as an ansatz
So—1m(n.) diverge, but the ratio between them goes towithin a density functional representation of the solid phase
zero, implying thatw., becomes approximately*, as ex- [16]. The transition points are then determined by comparing
pected from the low density limit, in which the disks do not the two free energies and their derivatives, e.g., equating the
contribute to the pressure in the system. corresponding pressures and chemical potentials.

The solution of Eqg.(20), substituted into Eq(23), to- In this paper we use an approximate analytical form to
gether with the ability to calculate exp¥/,,/kgT) for small  describe the excess free energy per hard disk in the fluid
values ofm [according to Eq(10)], is what is needed as an phas€6],
input in Eq.(24) when coming to draw a phase diagram that
would separate among regions @fembedded disk cluster- (7, Z(n')-1
gas andB-embedded bulklike disk systems, and the corre- Fex= J; d7 ,
sponding coexistence regions. In the following section we

study a particular case in whichin Eqg. (20) describes a 279—1
system of hard disks. (27— 1)In{ 1— P =In(1—n/n0)
= , (2
2(1-70) @0

VI. THE CASE OF HARD DISKS

In this section we apply the theory that we developed in

the previous ones in order to calculate the phase diagram thathere » is the disk volume fraction andZ=[1-27
contains regions ofa-embedded disk cluster-gas and *+(270—1)%% 73] " is a heuristic hard disk equation of
B-embedded bulklike disk systems, and the correspondingtate that exactly reproduces the first two virial coefficients
coexistence regions, in the case of disks that are not alloweand diverges at the crystalline close-packing volume fraction
to overlap with each other but do not interact otherwise,7o=(+/3/6)mr. In comparison with other analytical approxi-
namely, the so-called hard disks. Hard disk is probably themations, Eq.(27) provides the best combination between
simplest model of a two-dimensional system of colloids, butsimplicity and agreement with results obtained by numerical
it is also the only model for which analytical theories yield a simulations[6]. fe, is added to the ideal parf;y=In(72)
good agreement with computer simulations as concerning the 1, to give the dimensionless free energy per hard disk in
equation of statg6] and the thermodynamic conditions at the the fluid phasef=f.,+ f;y. To calculate the free energy of
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the hard disk solid phase with the symmetry of a triangular , I e(7e)
lattice, sayfg, we apply the differential formulation of the e an =y,
GELA [7] with a Percus-Yevick-like approximate equation F
for the direct correlation functiofB],
afs(ns)
2 V1SUY/S
=Ty, 32
d s I7s Ty (32
C(d,7)==0(1=d)co(n)| 1= 4n+adnwy| 5| +ds(7)|,
(28) 1 1
my| — 1| +fe(pe) =7y ——1| +fs(ns).
nF UL

whered=R/(2r,), ©(d) is the Heaviside step function,
In the case of hard disks we have obtained that 2.44,

__arccogd)—dy1—d* which implies that values of that are larger than 2.44f.
wa(d)=2 T ' (29 Eq. (18)] are required in order to remain in the complete
wetting regime(4) and apply our theory to describe the tran-
5 s sition between an a-embedded cluster gas and a
)= 1+7+3pn°—p7n (30 B-embedded hard-disk solid.
Co(7)= (1-7)3 ! We are now able to write Eq23) for the case of hard
disks,
and 1
Wy(n__1)+fF(77F), Y<VYtr
_ _ _ _ 2 F
o ()= 3,287 2P) (25 9p)py—(T=3p)pn’ g* = ) (33)
8 1+7+3pn*=p7y’ wy(——l +fs(ms) Y= Virs
(31 7s

p=1—(43)/7 is related to the approximate hard disk and learn fr_om Eq(26) that in the case of phase sep.aration,
equation of stateZ,(7) = (1+p»2)/(1— 5)2, which exactly the hard d!sk system in thlﬁ-_rlch separateq dom:?un can
reproduces the first two virial coefficients and is appropriategither obtain the characteristics of a colloidal fluid phase
for use within the GELA that produces low effective liquid (When y<yy), or the characteristics of a colloidal solid
densities in the description of the solid phase. As the wettingghase(wheny>yy).
condition merely alters the pressure of the hard disk system T0 calculate the mean disk volume fraction at the transi-
[cf. Eq. (17)], there is nothing to stabilize the square latticetion, »*, we should now apply Eq24), which requires as
symmetry, and the GELA still predicts a stable two- an input the expfU,) functions. In the case of hard disks,
dimensional solid only on a triangular lattice. the only effect the disk colloid-colloid interaction has is
As a check, we calculate the fluid and solid volume frac-avoiding the disks from overlapping, i.e., the distance be-
tions at the hard disk fluid-solid transition point by solving tween two disks is always larger than their diameteg.2
for the equilibrium coexistence conditionSesig( 7uid) ThenU,, can formally be obtained fronitf. Eq. (10)]

= Wsolid( 7sotid  @Nd Pryig( 711uia) = Psotid 7solic)» Where u is

the hard disk chemical potential aitlis the pressure. In a o o
very good agreement with the results obtained bydecu- e—Um:_'A—Z(m—l)f f
lar dynamics simulation technique #f,iq=0.691, m: Iral=2rg Irm-1l=2rg

Ns0ig=0.716, P/(kgTpcp) =7.72) [17] and aMonte Carlo dfredr e e Wl fmoD/kgT 34
simulation  technique  %g,g=0.690,  7soiq=0.724, ! m-1 - 34
P/(kgTpcp) =8.08) [13], we obtain that at the fluid-solid

transition point, the corresponding volume fractions arevhere them—1 vectorsry, ... rn_; describe the relative
Miuia=0.691, 7s0iq=0.724, andP/(kgTpcp) =7.73, where Positions of them disks, and the integrations are carried out
pcpis the hard disk close-packing density. under the restriction that for all values ofl,j=m—1,

Iri—r;|>2rq. Wy, is the effective interface potential that we
here approximate by surrounding a given configuratiomof
disks by the shortest possible interface. For example, the

B. Wetting controlled phase diagram dimensionless forms o,, W,, andW; are (see Fig. 3
Having two hard disk phases, described by the two di-
mensionless free energies per difkandfg, we obtain two W, /kgT= 21X, (35)

solutions to Eq. (20), »f and 7g. Consequently,
limy,_..Un/min Eq. (21) takes the lower of the two values,
wy(Uni—1)+1f(ne) and wy(1/ps—1)+1(7s). Hence, a
change in our description of the large cluster occurs at an
x-independent value of, sayy,, that is given by solving where R=|r,| is the distance between the two digk&g.
numerically the equation set 3(a)], and

W, IkgT=(27+ 2R/rg)x+ (2R/r g— 7)Yy, (36)
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R,+R,+R Ri+R,+R3y)(R{—R,+R3)(R1+R,—R3)(—R;+R,+R
W, kg T=| 27+ 1T R TRyl V(R;+R;+R3)(R;— R, 3)(21 2~ R3)(—R1+ R+ Ry)
) 4rg
R,+R,+R
L r2 S o v, (37)
0

whereR;=|r;|, R,=|r,|, andR;=\R:+R5—2R;R,cos are the pair distances between the three disks. In the coefficients
of x in Egs.(36) and (37), the first term corresponds to the interface wetting the disks, and the second one to the interface
bridging between them. In the coefficient pfin Eq. (36), we subtract the area of a disk from the area of the rectangular
defined by the four meeting points of the bridging interface with the disks. In the coefficigninoEq. (37), the first term
corresponds to the area of the triangle formed by connecting the centers of the disks, the second term corresponds to the
complementary area emboarded by the bridging interfaces, and theribigdtive term is the reduction of the area of the
disks that was included in the two previous terms.

Substituting Eq(36) into Eq. (34) yields the result

e-Uze iA-ZzwrgFm—U%”'>X+<2'—W>y]d| _ VTR enranr o mm (39)
2! 2 Z(x+y)?

wherel=R/r, andz=A?/(wr3), and substituting E¢(37) into Eq. (34) yields the integral

1
e Vs aA—ﬁéf d'lf [T PR P Y P P P P PP P P PR PR P PR PR L

-2 27 e—zw(x—y>f°°d|l |1fwd|2 I, T doe U1+l + gl [T F L F TR (= o F ) F o= Tg) (— T ¥ ¥ g1y + 15+ Isly)
2 2 Omin

31(zm)?

(39

wherel;=r,/ry, i=1 and 2, are the scaled position vectors(21)]. Two values ofx are considereds=1.2 and 1.5, and
of two disks relative to a third one that is located at thewe keep the value of fixed, in the region wherd@,<T
origin, andl;=l,—1;. I;=|l;|=R;/ry, i=1,2, and 3, are the <T [cf. Eq. (4)], so that in all our calculationg=II. We
dimensionless distances between the digkss the angle have chosen small valuesin order to broaden the cluster-
betweenl, and |, such thatly=\l17+15—2I,l,cosf, and gas region in a phase diagram that would also include high
Omin=arcco§(12+15—4)/(21,1,)] is the lowest valug can  values of. This allows the full topology of the phase dia-
take for given values df; andl, under the hard core condi- gram to appear in a single figure. However, it should be
tion1;=2. The symmetry in the case of three disks allows usoted that for values of that exceed the given values xf
to replace the integration ovérfrom = to 27 by the factor  our theory has to be modified as we leave the complete wet-
2, on top of the Zr factor that accounts for the rotational ting regime(4) [cf. Eq. (18)]. The main modification would
invariance of the system. include corrections to the interfacial stiffness associated with

Because the integrands in E438) and(39) decay expo- thin wetting films at the disk surfaces, but this would not
nentially, and vanish at distances much smaller than théhange the topology of the phase diagram. We avoid doing
mean distances between clusters in the dilute limit, we allovihat for the sake of simplicity. The graggphase diagramwe
the upper integration limits to reach infinity without affecting Obtain separates among regionsaeémbedded disk cluster-
the results. Equatiof89) can still be integrated numerically 9as andd-embedded hard disk systems, and the correspond-
for given values ok, y, andz, but, for values ofn that are  ing coexistence regions. More specifically, when the
larger than 3, integrating Eg34) becomes a formidable mean volume fraction of the disks, reachg® from below,
task. However, fog<g*, exp(mg—U,) is a monotonically the system phase separates anddrembedded disk cluster
descending function and for a certain range ofthg, andz gas coexists with @-embedded colloid phase of hard disks
parameters a good approximation ﬁ can be obtained, with a local volume fractionvithat is determined by Eq.
cutting the sum in Eq24) atm=3. The choice of three does (21). Upon further increase im, the pressure in the system
of course not apply in general, and the cutoff valuenof remains unchanged and the extent of {Beich domain
should be determined according to the required precision fogrows but without change in the density of the disks inside it,
given values ok, y, andz. until the point of =7’ is reached and the fluid becomes

In Fig. 4 we plot versusy both [27_,mexp(Md*  metastable in the bulk. For values gflarger thany’, the
—U,)l/z as an approximation fop* [Eq.(24)], and#’, the  pressure in the system is no longer dictated by the valye of
disk volume fraction in the largg-rich domains[see Eq. but by the equation of state of grembedded hard disk sys-
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3.0 r

LJ A
rgtee FIG. 4. A calculated phase diagram that contains re-
gions of a-embedded disk cluster gag;embedded hard
disk liquid, B-embedded hard disk solid, and the corre-

sponding coexistence regions in thg-y) plane. The dif-
ferent regions are labeled by insets, which are schematic
illustrations of the characteristic equilibrium configurations,
and in which the white and gray backgrounds represent the
a and B phases, respectivelx=1.2 andT is kept fixed,
Tw<T<Tc, so thatyxIIl. At mean disk-density values for
which thea-phase is not stable, the system takes the equi-
librium pressure of the correspondingrembedded hard
disk system, independently of the valuesyofn the case of
x=1.5, the condensation line is represented by the dashed
line. The horizontal three-phase line extends in this case to
connect with the dashed line but the rest of the phase dia-
gram remains unchanged.
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1.0

0.0 L 1 L 1 1 " ]
0.0 0.2 0.4 06 mnm, 08

n

tem with a volume fraction; and a temperatur€. Thus, as the fluid-fluid (a-p) first-order phase transition line. In par-
7reaches the value of;,q=0.691, a fluid-solid phase sepa- ticular, we have calgulat(_ad an approximate ph_ase dlqgram for
. — the case of hard disks in the complete wetting regide
ration occurs untily reaches th'e value ofsoiq=0.724 and 54 ophserved how the wetting condition adds a gas-liquid
the hard disk system turns solid. In all the relevant CaICUIa’[ransition to a system of hard disks that otherwise show only
tions f=fg, for Y<Yu, andf=fs, for y>yy. ALY=Yv, 5 fiyid-solid transition. This property disappears Jory,,
7' Jumps from#g 10 7. These two values are determined e ey — 11r2/k,T, andy, is the value that corresponds to
by the solution of the equation s€&2) and are very close to
Miuig= 0.691 andyyiq=0.724, which are the corresponding
values at the fluid-solid hard disk transition point. °o;

The lower values ofy at which the phase separation oc- me'”giu"' o
curs, = n* (Fig. 4), grow withy. The speed of this growth T
goes down with the increase in the valuexgfdue to higher
values of the interfacial stiffness or the radius of the disks

o

1.0

o
0,
OQO
CCcooo0om=]
0.8 | i

The justification in takingn=3 as a cutoff whex=1.2
can be evaluated visually in Fig. 5, where we plot e&p(
—U)/7*, 2exp(@*—U,)/7*, and 3 exp(8 —Uy)/n* as 0.6 |- 1
functionsy. Up to y~y,,, the expectation number of disks
that are found as dimers and as trimers grows witht the
expense of the expectation number of monomers. These
numbers fall modestly foy>y,,. The reason is thagj*
grows faster withy when y<y, [cf. Eq. (33)], while
exp(—U,, descends witly [cf. Eq. (38)]. Under the condi-
tions in which the data shown in Figs. 4 and 5 are calculated,
the number of disks that form monomers does not get below
80%. Not more than 25% of the disks are ever expected to 0.2 .
form dimers, and not more than 4% to form trimers. Thus
neglecting the contribution coming from clusters with more

04 B

DDDDDDDDm:Z

. . . . . oU
than three disks is a good approximation in the example 0o ob
presented here. 0ob 825 600000000000 om=3
) 1.0 20 y 3.0
VIl. CONCLUSIONS ’ Yy

In general, we have developed an analytical method for FIG. 5. An estimate of the probability to find a disk in a cluster
Calculating the phase diagram of a two-dimensional mixturQ)f sizem, m e)(p(mg"—Um)/?7 versusy, at the transition value of
of disk colloids with two fluid components{andg), to one  the disk chemical potentigkp=g*kgT. x=1.2, and the tempera-
of which (B) the disks show a preferential affinity, close to ture is the same as in Fig. 4.
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the triple point. Experiments, theory, and computer simulahavior observed in this study is not expected to change. In
tions have shown that the existence of the vapor-liquid tranerder to include the vicinity of thex-8 critical point, the
sition in systems of colloids depends on the range of the&orresponding scaling behavior of theg interfacial stiff-
effective colloid-colloid attraction, and that the liquid colloi- nesso would have to be included.

dal phase disappears when the width of the attractive well |n our description of the hard disk colloidal system, we
becomes less than approximately one-third of the diameter ¢{aye increased the precision in comparison to previous cal-
the colloidal spherefl4]. In this sense decreasingin our culations[7] by applying Eq.(27) for the fluid phase, and
model, i.e., approaching the-g transition conditions, cor-  simplified the numerical procedures by applying the approxi-
responds to increasing the effective range of the pair intermate analytical form of Eq(28) for the direct correlation
actions in systems of interacting disks. function within the GELA.

Our method can be applied in three spatial dimensions Qur results are relevant under the general interest in the
where a different metho@5] has qualitatively predicted a effect the embedding medium can have on the phase behav-
phase diagram that resembles Fig. 4 with two exceptionspr of colloids. As a particular case, they can be related to the
one, the earlier studies do not provide a distinction betweegffect the state of lipids in biological membranes can have on
the different g-rich colloidal phases; two, the prewetting the organization of large inclusions embedded in them, e.g.,
transition line, which distinguishes between regions of wethey can provide a guide for experimentalists to optimize the

and non-wet spheres in three dimensions, is not expected gbnditions for protein aggregation and protein crystallization
two dimensiong11]. Moreover, the framework developed in protein lipid recombinantg4].

here enables the calculation of the phase diagram in larger
regions of the parameter space than before.

Our theory can be extended to deal with dilute systems of
disks outside the complete wetting regifiieg. (4)]. To do ACKNOWLEDGMENTS
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